ML摘要
1.Embeddings
1.An embedding is a mapping from discrete objects, such as words, to vectors of real numbers. For example, a 300-dimensional embedding for English words could include:
1 | blue: (0.01359, 0.00075997, 0.24608, ..., -0.2524, 1.0048, 0.06259) |
2.Is an embedding the same as an embedding layer?
No. An embedding layer is a part of neural network, but an embedding is a more general concept.
2.NFM与AFM用于CTR预估
- 网络结构,通常,钻石型的网络结构往往优于其他结构
- 隐藏层单元数不是越高越好,中间有一个临界值达到最优
- Dropout在数据量本来就很稀疏的情况下尽量不用,不同的数据集dropout表现差距比较大